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What is an AARDDVARK? Our AARDDVARK network of
sub-ionospheric energetic precipitation monitors :
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MORE INFORMATION:
www.physics.otago.ac.nz\space\AARDDVARK homepage.htm

Reference: Clilverd et al., Remote sensing space weather events: the
AARDDVARK network, Space Weather. 7. 2009,



http://www.physics.otago.ac.nz/space/AARDDVARK_homepage.htm

We use the ionosphere as a precipitation detector:
Subionospheric Radio Wave Propagation

IONOSPHERE Precipitation

h~85km (night) \ \ \ \

VLF RADIO WAVE

) 1))

Radio transmissions at Very Low Frequencies (VLF) largely trapped between
the conducting ground (or sea) and the lower part of the 1onosphere (70-90
km) , forming the Earth-ionosphere waveguide.

Changes in the ionosphere cause changes in the received signal. There is very
low attenuation in this frequency range, such that transmissions can propagate
for many 1000km's - long range sensing of the upper atmosphere!



The NAA transmitter
24.0 kHz
1 MW output power.
Big, high maintenance,
expensive!
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How does Space Weather do this?
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What Satellites see of the electron precipitation.
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What Satellites see of the electron precipitation.
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What Satellites see of the electron precipitation.

L= 4.00000 E= 1.00000 MeV
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What Satellites see of the electron precipitation.

L= 4.00000 E= 1.00000 MeV
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AARDDVARK uses the ionosphere to measure the

Proton lonisation Rates Electron lonisation Rates
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What can a Forks AARDDVARK measure?

VLF Tx
AARDDVARK Rx
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Forks :
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wave -particle
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with Churchill




What can a Forks AARDDVARK measure?
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What electron fluxes will a Forks AARDDVARK
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Concentrate on NAA-SGO Path

In our study we make use of AARDDVARK subionospheric observations made by
our receiver (Rx) running at the Sodankyld Geophysical Observatory (SGO). Focus
on observations from NAA.
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The transmissions will be
influenced by outer radiation
belt (L=3-7) energetic
electron precipitation.
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Amplitude of NAA recg

SR NAA= Sunrise
NAA

SS NAA = Sunset
NAA

Challenge is to
extract changes
produced by e-
precipitation
from the normal
seasonal
variation!

: LOUE’PLO .

It | |hh~

—— SOUE’F‘LO

%

|
o |
| ‘ (il (il W
.. lI
ol I |

fHlitk e ;;_:“'.?I-”u H\[Hu ‘l ‘
LN w'm» -
il II!I ! 'i!'i(' "

i "Q’iﬂ U
| | L'\ |

!\';I‘i,!
!!‘1’ |

i

L o




Identify the Quiet levels:

To determine the
changes in received
amplitude caused by
particle precipitation,
we need to i1dentify the
“Quiet Day Curve”
(QDC), the seasonal
variation in quiet time
amplitudes. We do this
from the 2005-2008
data during truly quiet
times (minimal
precipitation).

During the “summer
months” the QDC is
essentially the same for
all times at ~60.5dB.

NAA to SGO: 0230 UT, 2005

Day no. from 1 Jan

22-06 MLT



Example of Space weather (storm) responses

Geomagnetic storms (through Ap) lead to enhanced radiation belt fluxes (in the POES
90°telescope) and appear in the NAA-SGO observations as enhanced amplitudes.
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Another example of Space Weather

NAA-SGO precipitation monitor and the POES “trapped” fluxes can respond to big
and small changes in geomagnetic activity (Ap), and the time-duration is very poorly
represented by Ap.
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It 1s not clear Ap
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inside atmospheric
models (sometimes
done).



Precipitation Energy Spectra from DEMETER

We fit the DEMETER 3<L<7 DLC fluxes by a power law, and find that the
typical flux variation with energy up to 700keV is best described through a
power law with slope of k=-2 1.
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Modelled Response to Precipitation
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Modelled Response to Precipitation

Use LPWC propagation code and simple ionospheric chemistry model to determine
the expected NAA@SGO amplitude response to differing electron precipitation
flux magnitudes.
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From this well behaved behaviour we can construct a lookup table, which
tells us what amplitude change corresponds to what precipitation flux.



Resulting Precnpl'ra'rlon Fluxes from NAA@SGO
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Summary and Next Steps

" The analysis of AARDDVARK amplitude variability has the
potential of providing a detailed, near real-time, picture of
energetic electron precipitation fluxes from the outer radiation
belts — good for atmospheric modelling.

* Test the precipitation fluxes derived from the AARDDVARK NAA-

SGO measurements against other instruments which can detect
precipitation (like riometers).

* Work towards the goal of making a “LEVEL2” product — a
near-real time precipitation monitor available on the world wide
web from this data source.

* AARDDVARK: a great opportunity to study loss processes in the
radiation belts, and the generation of excess 1onisation in the D-
region, through the impacts of Space Weather.
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