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Introduction
The annual variation is one of the more characteristic temporal variations in plasmaspheric density and 

so far has been studied mostly using whistler measurements [Lemaire and Gringauz, 1998, and 

references therein]. Continuous ground-based monitoring of the plasmaspheric density can be also done 

by measuring the geomagnetic field line resonance (FLR) period TR at a given L-shell, since TR is  ∝ ρeq
1/2

(ρeq being the equatorial plasma mass density). 

In the present work we investigated the annual variation of ρeq using TR measurements at two different 

magnetic shells (L = 1.61, 1.83)  obtained by applying the cross-phase technique to the ULF magnetic 

signals recorded at the South European Geomagnetic Array (SEGMA, ∼ 15°E) during 2001-2008. 

Statistical analysis
In order to separate the effects of solar activity and seasonal dependence we fitted the observations

with the following analytical model: 

log T = log To + b (P10.7 −−−−130) + A1 cos [ω1(d −−−− d1)] + A2 cos [ω2(d −−−− d2)]
where:  

d is the day number (DoY) ;  ω1 = 2π / 365  day−1 ;  ω2 = 2ω1 ;  the phases  d1 and  d2 of the annual 

and semiannual modulation correspond to the days when the modulation reaches the maximum. 

With this formulation, the annual and semiannual variations are expressed as factors modulating the 

resonance period. A similar expression was adopted by Carpenter and Anderson [1992]  for 

constructing an empirical model of the equatorial  electron density in the plasmasphere.  

The parameters of the least squares fit to the daily values of Figure 1 are reported in Table 1 .    

Using the b parameter in Table 1, all daily values have been reduced to P10.7 = 130 and monthly 

medians of these reduced values have been determined (Figure 2 ). The annual variation now stands 

out more clearly and some signature appears also at L=1.83 (in 2002, 2003, 2004, 2006).

The temporal pattern of the annual and semiannual components determined by the best fit is shown in 

Figure 3 .   The main features are the following:

L=1.83: the annual component modulates TR by ± 4%  with extreme values at solstices;

the semi-annual component is smaller (modulation ±2%), maximum values in late April and late October;
the resulting variation (annual + semiannual) is maximum in November with values 12% higher than in 

July.  

L=1.61: only the annual component is significant, maximum in early January with values 12% higher than

in June/July.

Theoretical modelling
We use a physical numerical model of the plasmasphere-ionosphere system [Förster and Jakowski, 1988].    

Two different simulated conditions are considered:  

high solar activity (F10.7 = <F10.7> = 180)   and   low solar activity (F10.7 = <F10.7> = 80).

Monthly values of the predicted FLR periods (noon time) at both L-shells are computed and a decomposition 

in terms of annual and semiannual modulations has been carried out. The resulting annual variation is 

displayed in Figure 4 in the same format as in Figure 3.

A good agreement (both in amplitude and phase) is observed between the simulated high solar activity

conditions (red line) and the experimental observations. In particular, the model predictions confirm a minor 

contribution of the semiannual variation at L=1.61, and the presence of a secondary maximum in March/April 

at L=1.83.  

Conclusions
After converting TR values into equatorial plasma mass densities ( ρeq ∝ TR

2), we deduce 
density values at L = 1.61 to be ~ 25% larger in December/January with respect to June/July.  

A similar excursion is inferred at L=1.83 although (because of a significant contribution of the 

semiannual variation) the maximum value occurs in November. 

Good agreement is observed with predictions given by a physical-numerical model of the 

plasmasphere.

We then confirm previous results obtained from whistler [Lemaire and Gringauz, 1998] and 

satellite [Clilverd et al., 2007] measurements showing that the annual variation in the European
longitudinal sector is of much lower amplitude than that in the American sector essentially

because of a smaller asymmetry in the ionospheric solar illumination at opposite ends of the 

magnetic field lines.

Observations
Figure 1 shows the daily means of the resonance period TR. Red horizontal lines indicate the 

yearly medians. The bottom panel show the corresponding behaviour of the proxy for the solar EUV:     

P10.7 = (F10.7 + <F10.7>) / 2, where <F10.7>  is the three solar rotation average of  F10.7.
A general trend of decresing period with decreasing solar index [Vellante et al., 2007] is clearly

visible. Some evidence of an annual variation with minimum values in the central part of the year can 

be also seen at  L = 1.61 in 2002, 2003 and 2006.
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Table 1.  Results of the best fit
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