Comparison of VLF signals mesured simultaneously on board and ground stations

D. Hamar ⁽¹⁾, O. E. Ferencz ⁽¹⁾, J. Lichtenberger ⁽¹⁾, Cs. Ferencz ⁽¹⁾, P. Steinbach ⁽²⁾

C. J. Rodger ⁽³⁾, M. Parrot ⁽⁴⁾

[1] Space Research Group, Eötvös University, Budapest, Hungary

[2] Research Group for Geology, Geophysics and Space Sciences of HAS, Budapest, Hungary,

[3] Department of Physics, University of Otago, Dunedin, New Zealand,

[4] LPCE/CNRS, Orléans, France

Outline

- Motivation
- Measured data
- Methods of the data processing
- Results
- Discussion

Motivation

- Increasing number of AWDA stations
- Increasing number of whistler data
- Using these data for monitoring the plasmasphere
- Still unclear processes in whistler propagation
- Simultaneous onboard (DEMETER) and ground measurements
- Previously developed data processing methods and wave propagation models

Methods

- Observing the conventional spectrograms
- Matched filtering

obtain accurate frequency - time -amplitude pattern

• FIT - best fit approximation (Tarcsai) conventional propagation and plasma-model

fitting Bernard's dispersion curve

 Calculating theoretical waveforms using the full-wave solution of Maxwell equations in inhomogeneous plasma for accurate and simplified plasma model

Measured data: Tihany-DEMETER ducted whistler

DEMETER VLF "burst mode"

Tihany-AWDA NS, EW comp

Spectrogram of the selected whistlers

Matched filtering of whistlers - theory

Determine the f-t pattern

Select a given frequency

Calculate the waveform with Δf bandwidth: construct the filter

Filtering

Determine the time of the peak of the filter output

Determine the amplitude of the peak

Repeat this process with other frequency throughout the trace

Matched filtering of whistlers - theory

Determine the f-t pattern

Select a given frequency

Calculate the waveform with Δf bandwidth: construct the filter

Filtering

Determine the time of the peak of the filter output

Determine the amplitude of the peak

Repeat this process with other frequency throughout the trace

Matched filtering of whistlers - theory

Determine the f-t pattern

Select a given frequency

Calculate the waveform with Δf bandwidth: construct the filter

Filtering

Determine the time of the peak of the filter output

Determine the amplitude of the peak

Repeat this process with other frequency throughout the trace

Matched filtering of whistlers - in practice

Filter output for DEMETER 1. whistler group, trace B, frequency: 6000 Hz

Bernard's approximation with parameters:

$$D_0 = 48.2 \text{ s}^{1/2}$$

 $f_{\text{Heq}} = 84.2 \text{ kHz}$
 $f_n = 30.3 \text{ kHz}$

Construct the matched filter spectrogram

Construct the matched filter spectrogram

Matched filter spectrogram of the measured data

Vertical transformation

Vertical transformation of the measured data

Vertical transformation of the measured data

accuracy: 2-3 ms

resolution: 10 ms

Measured data: Dunedin (N.Z.) - DEMETER fractional hop-whistler

DEMETER VLF "burst mode"

Dunedin -AWDA NS, EW comp

Spectrogram of the selected whistlers

Demeter time0 = 2008.12.15 UT 10:43:10.217 L = 2.84 alt = 677 mlat = -48.59

Spectrogram of the selected whistlers

Demeter time0 = 2008.12.15 UT 10:43:10.217 L = 2.84 alt = 677 mlat = -48.59

Full-wave solution of short impulses in inhomogeneous plasma (Ferencz, O.E. 2005)

- Derived from the Maxwell equations
- For arbitrary shaped non-monochromatic signal
- In inhomogeneous, anisotropic, linear, cold plasma

$$E(x,t) = -\frac{1}{4} \mathfrak{F}^{-1} \left\{ \frac{C_0(\omega)}{\sqrt{k(x,\omega)}} \int_{x_{\max}}^x \frac{1}{2k(u,\omega)} \frac{\partial k(u,\omega)}{\partial u} \cdot e^{-2j \int_0^u k(v,\omega) dv} du \right\}$$

- $C_0(\omega)$ arbitrarily shaped exciting signal
- $k(x, \omega)$ "propagation factor"

. _Դ-۱

inverse Fourier transformation

Calculating the waveform

IRI model

L = 1.9

exciting signal: calculated"synthetic" whistler

h = 700 km

Spectrogram of the calculated signal

Vertically transformed mf spectrograms

Spectrogram of the calculated signal

Demeter

Reflected signal

MODEL: fractional whistler excitation simplified plasmasphere full-wave solution discrete approximation

Conclusions

- Only a part of the signals measured on board can be detected on ground station
- Reflecting / scattering inside the ionosphere result several whistler traces on board
- The average, "smooth" plasmasphere results disperged noise
- The disperged noise can propagate to the ground resulting "false" whistler-detection
- The originating source of the "false" whistlers can be local lightning.
- The source whistler statistical investigation needs eliminating the "false" signals

The research leading to these results has received funding from the European Community's Seventh Eramework Programme (IEP7/2007-2013), under grant agreement n° 263240

Seventh Framework Programme ([FP7/2007-2013]), under grant agreement n° 263240.

The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]), under grant agreement n° 263218.

POPDAT

COOPERATIO

EUROPEAN COMMISSION

European Research Area

