PLASMON: WP3: Data Model Comparison

A. M. Jorgensen Electrical Engineering Department New Mexico Tech USA

Outline

- Description of DGCPM
- Comparison with observations
 - LANL satellite observations
 - VLF Whistler observations
 - FLR FLIP/SAMBA observations
- Description of Data Assimilation
- Implementation
- LANL satellite assimilation
- Next Steps
 - Electric field
 - Particle Filter
 - Implementation
 - More observations

Description of the DGCPM

- Dynamic Global Core Plasma Model (e.g. Ober [1997])
- 2D, single species (discussion of adding multiple species)

$$F_n = -rac{NB_i}{ au} \qquad \qquad F_d = rac{n_{ ext{sat}}-n}{n_{ ext{sat}}}F_{ ext{max}}$$

$$rac{D_{\perp}\,N}{Dt} = rac{F_N+F_S}{B_i}$$

 $ec{B}\left(ec{r}
ight)$

Example of a DGCPM run

Built-In Electric Field Models

Gallagher et al. (1995)

Other models to follow (see later)

Comparison with LANL Satellite observations

Gallagher et al. (1995)

Comparison with LANL Satellite observations

Gallagher et al. (1995)

Comparison with LANL Satellite Observations – with Model Noise

Gallagher et al. (1995)

VLF Whistler Observations from Dunedin, NZ

• August 2010 storm

VLF Whistler Observations from Dunedin, NZ

• August 2010 storm

Comparison with VLF Whistler Observations

I had to divide VLF densities at L=4.5 by 10 in order to get agreement

Comparison with VLF Whistler Observations – with Model Noise

I had to divide VLF densities at L=4.5 by 10 in order to get agreement

FLIP/SAMBA Comparisons

J. Duffy (2011)

FLIP/SAMBA Comparisons

J. Duffy (2011)

Description of the Data Assimilation

- For the time being we use the Ensemble Kalman Filter
- Model ensemble:

$$A = egin{bmatrix} \psi_{11} & \psi_{12} & \ldots & \psi_{1N} \ \psi_{21} & \psi_{22} & & \psi_{2N} \ dots & \ddots & dots \ \psi_{m1} & \psi_{m2} & \ldots & \psi_{mN} \end{bmatrix}$$

- Analysis: $A_{\text{posterior}} = A_{\text{prior}} \times X$
- (computing X requires, a series of matrix operations including SVD, multiplications, and additions)
- Typical: $A: m \times N = 40000 \times 100 = 4 \times 10^{6}$

$$X:N imes N=100^2=10^4$$

Model Noise

- For now the model noise is entirely in the electric field
 - In the future it could be in refilling/loss rates also
- q contains as many parameters as are needed
- In the two built-in models q is just the value of the KP parameter of those models
- A third model I have been working with has two parameters but no results included here
- Augmented state:

$$\psi^* = egin{bmatrix} q \ \psi_1 \ \psi_2 \ dots \ \psi_m \end{bmatrix}$$

$$q_k = lpha q_{k-1} + \sqrt{1-lpha}\,w_k$$

Implementation

- Homemade code
 - C++
 - MPI use to parallelize the problem across multiple CPUs on multiple computers on a network.
 - ScaLaPACK a parallel linear algebra/matrix library which uses MPI
 - I wrote a C++ class which encapsulates the Fortran interface

LANL Satellite In-Situ Assimilation

Can we drive the model with the simple parametrized electric field (Sojka, 1986) and improve the agreement with LANL insitu observations?

LANL Satellite In-Situ Assimilation

Can we drive the model with the simple parametrized electric field (Sojka, 1986) and improve the agreement with LANL insitu observations?

LANL Satellite In-Situ Assimilation

Can we drive the model with the simple parametrized electric field (Sojka, 1986) and improve the agreement with LANL insitu observations?

Next Step: the Electric Field

- AMIE electric potential as base with noise to modify it
- Zernike polynomials alone of with another model

Next Step: Particle Filter

- The Kalman Filter assumes linearity which is not fulfilled
 - Linear combinations can lead to un-physical states, including negative density
- We will also implement a Particle Filter and make comparisons
 - Can (probably) be implemented in the same code base

Next Step: Implementation

20 GFlops

- Computing on a GPGPU
- More sophisticated models with more observations require more computation
- Instead of using remote supercomputers we are beginning to use Graphics Processors
- Well-suited for grid-based processing like the DGCPM and many other models
 Workstation: 2 CPUs, 12 GB RAM, \$4000,

Tesla C2070: 480 multiprocessors, 6 GB RAM, \$2000, 1000 GFlops

Next Step: More Observations

- LANL In-situ
- AWDANet number density
- EMMA VLF mass density
- SAMBA VLF mass density
- Which leads to the next session.....

Conclusions

- Enough similarities between model and data that it is encouraging
- Some calibration will be needed and feedback should be provided, especially to VLF reduction
- Assimilation works well so far with only a few LANL in-situ observations