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What is Data Assimilation?

● We want to know the “state” of a “system.”

● The state could be time-evolving or not

● Could be a complex system:
● The global weather pattern: winds, temperatures, pressures, etc. 

● .. or it could be a simple system



  

The Use of Data Assimilation In 
Weather Forecasting

● To create a forecast we need:
● Current state of the system

● The expected evolution of drivers during the forecast period

● A model for the time-evolution of the system based on the drivers

● Drivers might include
● Solar power input

● Tidal forces

● .... others .... ?

● Drivers and the numerical model are “easy.”

● The current state is “difficult” because it requires complete 
knowledge of all aspects of the system – or does it require that??



  

How to Get Current State of the 
System?

● Measurements
● Usually incomplete

● Can interpolate between measurement points

● A model
● Run the model from far enough in the past such that initial conditions are 

not important

● Use measurements of the drivers to run the model

● “Butterfly” effect

● Ignores knowledge about past state of the system which could actually 
constrain what the current state is, if we knew how to do it. 

● The optimal is to use both observations and the model, and 
“tweak” the model – within limits – to make it agree with the 
observations



  

Firm Mathematical Footing

● We begin with a model

● ... which evolves

● .. or if we want to call the drivers out explicitly

● It's the same thing, but sometimes it is easier to think of the 
drivers as external and sometimes as internal to the model.



  

What is       ?

● For weather modeling it is grids of temperature, pressure, wind 
velocities, humidity, etc etc.

● Perhaps also an array of the drivers (which are inserted by the 
function f()), although that is not strictly necessary.



  

Bayesian Likelihood
(from Evensen, Ocean Dynamics, 53, 343-367, 2003)

● The probability distribution of the model given the (uncertain) 
observations

● But where did the prior probability distribution of       come 
from?

● It comes from the fact that we acknowledge that the model is not 
exact and that some “tweaking” which is not described by the 
numerical equations of the model is allowed.

● We will return to this later.



  

Sequential Likelihood Evaluation

● Remember that

● So we can re-write the previous equation as 

● ... or as 

● ... when assuming independent measurement measurements



  

Sequential Likelihood Evaluation

● ... which can be decomposed sequentially like this



  

Sequential Likelihood Evaluation

● ... and in general

● The conclusion is that Bayesian estimation can be decomposed 
sequentially. 
● We do not need to fit the entire time-sequence simultaneously.

● Instead we can run the model forward one step at a time and incorporate 
observations multiplicatively.

● The latter is much simpler. 

● Step-at-a-time assimilation is MUCH simpler than assimilating to an 
entire time sequence at once.



  

The State Transition Probabilities

● We still need to understand the state transition probabilities

● ... because the model is supposed to be exact, so why are there 
probabilities involved?

● Because instead of the model evolution

we should imagine a stochastic evolution - because the model is 
not exact -

where         is a random variable

● Obviously the model probability will diverge in this case unless 
we apply constraints – from observations.



  

The Original Kalman Filter

● Swerling (1958) and Kalman (1960) developed a formulation for 
linear systems. Estimate state based on measurements of 
observables, allowing for inaccurate model and measurement 
noise External driver

Model noise

System state

System evolution

Measurement noise

Measurement operator
Measurement

Driver effect



  

The Original Kalman Filter

● We can form estimates         and          of the mean and 
covariance of the state.



  

Example: vehicle position estimation
(adapted from D. Simon, Embedded Systems Programming, June 2001)

● Estimate “state” of a vehicle. State is 1-dimensional 
[position,velocity]

● We know the accelerator position, but external factors like wind, 
potholes, and other factors modify the actual effect

● We measure position, but it is not accurate

● If we use only measured position and ignore model we get 
positions, but with large uncertainties

● If we use only model and ignore measured position it will 
diverge because the model is not accurate (butterfly effect)

● The Kalman filter combines observations and model in an 
optimal way under certain assumptions



  

Example: vehicle position estimation
(adapted from D. Simon, Embedded Systems Programming, June 2001)

● Equation for velocity, including model noise

● Equation for position including model noise
Time step Acceleration

Model noise

Model noise



  

State Equations



  

Pick Some Numbers

● Measurements uncertainty
● Position measurements uncertainty: 10

● Model noise
● Assume constant acceleration of 1 with noise of 0.2. that means, we are 

confident in the model to within an acceleration of 0.2, or 20%. That 
means that if we don't adjust the difference between model and reality 
will grow very big  very quickly. After 10 s the model error will exceed 
the measurement error. 

● Based on the above we can compute what should be the the 
covariance of model and measurement noise. 



  

Kalman Filter Equations

If       is large then        is small, and model 
evolution dominates. Also, uncertainty will grow.

If       is small then       is large and measurement dominates. Also, uncertainty 
decreases. 



  

Position Estimate

The estimation error is much smaller than 
the measurement error because of the use 
of the model.



  

Velocity Estimate



  

What's the point?

● The point is that if
● You trust the model fairly well short-term but worry about “butterfly” 

effect

● You have uncertain and incomplete measurements

● Then
● Driving the model with observations improves the estimate of the state

● But isn't that just the same as smoothing?
● Yes

● ... smart smoothing and interpolation! 

● When you smooth you assume that all consecutive values are the same

● With data assimilation you can apply nearly arbitrarily smart 
smoothing/interpolation algorithms



  

Non-Linear Filtering

● Advance model according to actual equations, and linearize 
around the state.

● The linearization is done by replacing, in the coavariance matrix 
estimation, A, with the Jacobian of the state advance function f.

● This is called Extended Kalman Filtering, EKF

● Useful because most interesting models are non-linear

● Requires that the variances are small enough that the linear 
approximation of the Jacobian is valid.



  

Problem: Size and Computation

● For a small state of two numbers, like velocity and position in 
the problem we just saw, the Kalman filter, or even Extended 
(linearized) Kalman filtter, work well.

● For large problems like the plasmasphere                                 
they do not. The state for the default                                    
version of DGCPM is 40000 grid points.

● This results in a covariance matrix                                           
with 1.6 x 109 elements.

● Storage is not as much the                                                       
issue as is the computational                                               
burden.

● And do we really need                                                              
ALL covariance terms?



  

Ensemble Filtering

● There is a better way. Run a smaller number of models in 
parallel, each evolving with some random contribution while 
preserving mean and covariance of the ensemble.

● If we chose a ensemble size of 1000,                                       
then instead of a 40000 x 40000                                                    
covariance matrix  we have a                                                 
40000 x 1000 ensemble matrix.

● The posterior ensemble is now a linear combination of the prior 
ensemble, again such that it                                              
preserves the mean and variance                                                  
of the original Kalman Filter

● The computational burden is reduced by orders of magnitude. 

● But we need to understand how to generate the randomness.



  

Example: 1-dimensional model

● A convection-like model:

● Model state

● Model equations:

● Driver:

● Observation:

Driver Observation



  

1D Model Simulation

Measured



  

What is the Question?

● We can now ask several questions:
● Given that we know the model 

equations, how well can we 

determine the state of the

system based on only the noisy intermittent observations at x9?

● .... or... Given that we know the model 

equations, how well can we determine the

driver based only on the noisy intermittent observations at x9?



  

Model Noise

● This is what makes the models diverge to explore parameter 
space (parameter space is the driver)

● Parameter space is in this case just the behavior of the driver as a 
function of time

● Red noise:

Time constant

Random noiseP

f



  

Assimilation

Truth

Driver

Measurement

Measured Modeled 
(mean)

Modeled 
(standard deviation)



  

Discussion

● Between measurements the model 

ensemble diverges.

● Measurements noise is much smaller 

than the chosen model noise.

● At the time of measurement the ensemble is reset tightly around 
the measurement, thus giving rise to discontinuities. 

● But the extrapolation beyond the last data point is still “optimal” 
in the absence of future measurements. 

● In a moment we will return to using future measurements to do 
even better.

● But first let's try a different model noise....



  

A Different Model Noise 



  

Ensemble Smoothing

● One thing missing from the KF and EnKF formulations (but not 
from the original Bayesian formulation) is inclusion of future 
data. 

● Data constrain the model best a bit back in time, but not too far 
back in time.

● The two KF and EnKF do not take advantage of that



  

Ensemble Smoothing

● Ensemble Kalman Smoother – EnKS

● The transformation we apply each time data are available should 
also be applied to past states. We can use present data to improve 
the prediction from the distant past up to the present.

● But as we go very far back in time                                      
applying the transformation will                                                 
not change the mean and                                                   
covariance of the state. 

● The distant past states are random with respect to the current 
transformation, so no change. 

● Here is how the EnKS looks......



  

Example: 1-dimensional model

● (WOW!) Note that present observations can be used to improve 
past states, but that this does not change/improve present states – 
for that future data are needed



  

Particle Filter

● In the KF, EnKF, and EnKS, data are assimilated by forming 
new states which are linear combinations of the states before 
data are introduced. 

● This assumes linearity                                                            
which is not usually                                                                
correct.

● The particle filter does not assume linearity. Here new states are 
created by statistically picking the best of the existing states to 
continue to run and letting the worst states die. 

● But.. in order to have enough states to pick from it becomes 
necessary to have a far larger ensemble – perhaps 10-100  times 
larger(?)



  

Summary

● We started by formulating a Bayesian approach to combining 
model and observations.

● Then we looked at the Kalman Filter which is based on it, and 
found that it works best for small problems

● Then we briefly looked at dealilng with non-linearities (the 
Extended Kalman Filter)

● Next, we looked at how to deal with large problems with the 
Ensemble Kalman Filter

● ... and how the smoothing filter improves retrospective analysis

● And finally we touched briefly on the particle filter, which can 
be fully non-linear and non-Gaussian.
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