Annual Variation of the Plasmasphere Mass Density at L = 1.6 - 1.8 as deduced from Geomagnetic Field Line Resonance Measurements

M. Vellante¹, M. Förster²

- 1. Dipartimento di Fisica, Università dell'Aquila, Italy
- 2. GeoForschungsZentrum, Potsdam, Germany

Whistler results (Park et al., 1978)

Fig. 2. Whistler data illustrating secular changes in magnetospheric electron density near L=2.5. Annual and solar cycle variations are particularly clear. The quantity plotted, $D_5=70.7t_5$, is a measure of whistler travel time at 5 kHz. As such it is approximately proportional to the equatorial plasma frequency at L=2.5 and hence to $n_e^{1/2}$. The recordings were made at Stanford University (~110°W). Adapted from *Park et al.* [1978].

SEGMA (South European GeoMagnetic Array) (1.56 < L < 1.88)

Cooperation between:

- Space Research Institute of Graz (Austria)
- Physics Department, University of L'Aquila (Italy)

FLR period, daily means (0900 – 1600 LT) $\rho_{eq} \, \propto \, T_{R}^{\ 2}$

year

SOLAR IRRADIANCE DEPENDENCE OF THE FLR FREQUENCY (L = 1.61)

Day-to-day variations of the solar EUV/X-ray radiation affect not only the ionization content in the ionosphere but, through a rapid diffusion, also the whole flux tube plasma content at low latitudes.

Monthly medians

Figure 2

Statistical analysis

To separate solar activity and seasonal dependence observations were fitted by:

$$\log T = \log T_{o} + b (F_{10.7} - 130) + A_{1} \cos [\omega_{1}(d - d_{1})] + A_{2} \cos [\omega_{2}(d - d_{2})]$$

d : DoY ; $\omega_1 = 2\pi / 365 \text{ day}^{-1}$; $\omega_2 = 2\omega_1$; d_1 , d_2 : days when annual and semiannual modulation reach the maximum. Analytical modelling similar to that of *Carpenter and Anderson* [1992] .

L	# points	corr.coeff.	T _o (s)	b	10^A ₁	d ₁	10^A ₂	d ₂
1.83	1098	0.62	20.3	0.0012	1.042	Dec. 23	1.024	Apr. 27
1.61	716	0.85	15.2	0.0018	1.059	Jan. 6	1.002	Mar. 6

Table 1. Results of the best fit

Monthly medians (reduced to $F_{10.7} = 130$)

L=1.83: the annual modulation: ± 4%, extreme values at solstices; semi-annual component smaller (±2%), max values in late April and late Oct. ; resulting variation (annual + semiann.) maximum in November (12% higher than in July.

L=1.61: only the annual component is significant, maximum in early January with values 12% higher than in June/July.

Theoretical modelling

Physical numerical model of the plasmasphere -ionosphere [*Förster & Jakowski*, 1988]. Two different simulated conditions : high solar activity (*F*10.7 = 180), low solar activity (*F*10.7 = 80). Monthly values of the predicted FLR periods (noon time) at both L-shells are computed and a decomposition in terms of annual and semiannual modulations is carried out.

A good agreement (both in amplitude and phase) is observed between the simulated <u>high solar activity</u> conditions (red line) and the experimental observations. In particular, the model predictions confirm a minor contribution of the semiannual variation at L=1.61, and the presence of a secondary maximum in March/April at L=1.83.

Conclusions

We deduce density values at L = 1.61 to be ~ 25% larger in December/January with respect to June/July.

A similar excursion is inferred at *L*=1.83 although (because of a significant contribution of the semiannual variation) the maximum value occurs in November.

Good agreement is observed with predictions given by a physical-numerical model of the plasmasphere. We then confirm previous results obtained from whistler [*Lemaire and Gringauz*, 1998] and satellite [*Clilverd et al.*, 2007] measurements showing that the annual variation in the European longitudinal sector is of much lower amplitude than that in the American sector essentially because of a smaller asymmetry in the ionospheric solar illumination at opposite ends of the magnetic field lines.

